ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
When your test capsule is the test: ORNL’s 3D-printed rabbit
Oak Ridge National Laboratory has, for the first time, designed, printed, and irradiated a specimen capsule—or rabbit capsule—for use in its High Flux Isotope Reactor (HFIR), the Department of Energy announced on January 15.
Frederick R. Best, David Wayne, Carl Erdman
Nuclear Science and Engineering | Volume 89 | Number 1 | January 1985 | Pages 49-60
Technical Paper | doi.org/10.13182/NSE85-A17882
Articles are hosted by Taylor and Francis Online.
A proposed fuel freezing mechanism for molten UO2 fuel penetrating a steel channel was investigated in the course of liquid-metal-cooled fast breeder reactor hypothetical core disruptive accident safety studies. The fuel crust deposited on an underlying melting steel wall was analyzed as being subjected to two stresses, one due to the pressure difference between the flowing fuel and the stagnant molten steel layer, and the other resulting from the temperature variation through the crust thickness. Analyses based on the proposed freezing mechanism and comparisons with fuel freezing experiments confirmed that fuel freezing occurs in three modes. For initially low steel wall temperatures, the fuel crust was stable and grew to occlude the channel. At high steel wall temperatures (above 1070 K), instantaneous wall melting leading to steel entrainment was calculated to occur with final penetration depending on the refreezing of the entrained steel. Between these two extremes, the stress developed within the crust at the steel melting front exceeds the critical buckling value, the crust ruptures, and steel is injected into the fuel flow. Freezing is dominated by the fuel/steel mixture. The theoretical penetration distances and freezing times were in good agreement with the experimental results with no more than 20% error involved.