ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
E. Wacholder, S. Kaizerman, N. Tomerian, D. G. Cacuci
Nuclear Science and Engineering | Volume 89 | Number 1 | January 1985 | Pages 1-35
Technical Paper | doi.org/10.13182/NSE85-A17880
Articles are hosted by Taylor and Francis Online.
Two methods of sensitivity theory, i.e., the Direct Sensitivity Approach and the Adjoint Sensitivity Method, have been successfully applied to a simplified problem of transient, one-dimensional, composite region of single-phase and homogeneous equilibrium two-phase flow within a uniformly heated channel subjected to an exponential inlet flow decay. In both methods, exact analytical solutions for all elementary sensitivity coefficients at each point in space and time are obtained. A general procedure for the construction of the sensitivity equations' boundary conditions at the moving boundary between the two phases has been developed and applied. Discontinuities in the velocity and quality sensitivity coefficients across the moving boundary have been obtained. The enthalpy sensitivity coefficients are found to be continuous. The behavior of the sensitivity coefficients has been investigated. This investigation provides insights into the relative importance of the input parameters and the nature of the propagation of uncertainties in space and time in two-phase flow systems.