ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Timo Toivanen
Nuclear Science and Engineering | Volume 25 | Number 3 | July 1966 | Pages 275-284
Technical Paper | doi.org/10.13182/NSE66-A17835
Articles are hosted by Taylor and Francis Online.
By the technique of splitting the total directional flux into even and odd portions in angle, the stationary monoenergetic Boltzmann equation with arbitrary collision kernel and with arbitrary external directional source of a general geometry is symmetrized to a self-adjoint form. The continuity and boundary conditions for the resulting self-adjoint integro-differential equation are explicitly constructed. A variational principle is then set up by devising a self-adjoint Lagrangian whose minimum property is equivalent to the symmetrized Boltzmann equation with the associated continuity and boundary conditions. The developed variational principle contains no arbitrariness and is used for deriving unique variational boundary conditions for the P1 approximation of the spherical harmonics method. It is shown, for a general geometry, that applying the semidirect variational method with an angle-independent trial function yields, without any physical reasoning, the correct P1 differential equation and the corresponding no-return-current boundary condition.