ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Growing the nuclear talent in Texas
The University of Texas–Austin has released a report, Cultivating Homegrown Nuclear Talent in Texas: Workforce Development Recommendations for Advanced Nuclear Development, which emphasizes general actions needed for the state to meet the near-term demand for workers in the nuclear industry.
Timo Toivanen
Nuclear Science and Engineering | Volume 25 | Number 3 | July 1966 | Pages 275-284
Technical Paper | doi.org/10.13182/NSE66-A17835
Articles are hosted by Taylor and Francis Online.
By the technique of splitting the total directional flux into even and odd portions in angle, the stationary monoenergetic Boltzmann equation with arbitrary collision kernel and with arbitrary external directional source of a general geometry is symmetrized to a self-adjoint form. The continuity and boundary conditions for the resulting self-adjoint integro-differential equation are explicitly constructed. A variational principle is then set up by devising a self-adjoint Lagrangian whose minimum property is equivalent to the symmetrized Boltzmann equation with the associated continuity and boundary conditions. The developed variational principle contains no arbitrariness and is used for deriving unique variational boundary conditions for the P1 approximation of the spherical harmonics method. It is shown, for a general geometry, that applying the semidirect variational method with an angle-independent trial function yields, without any physical reasoning, the correct P1 differential equation and the corresponding no-return-current boundary condition.