ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
H. L. McMurry and G. J. Russell and R. M. Brugger
Nuclear Science and Engineering | Volume 25 | Number 3 | July 1966 | Pages 248-260
Technical Paper | doi.org/10.13182/NSE66-A17832
Articles are hosted by Taylor and Francis Online.
Experimental data on the slow-neutron ( < 0.1 eV) scattering of room-temperature water have been obtained using the velocity selector at the Materials Testing Reactor. The data agree with the results of Haywood obtained using a slow-neutron velocity selector, with the results of Kottwitz and Leonard obtained using a triple-axis spectrometer, and with the results of Kirouac obtained using a linear accelerator plus phased chopper. There are marked differences from the results of Sakamoto and co-workers, who used cold neutrons and a rotating crystal spectrometer. An extension of the Nelkin model has been devised that gives calculated results in good agreement with the MTR data, whereas the Nelkin model generally gives poor agreement. The new model treats water as a mixture of 10% of free molecules and 45% each of two aggregates in which the effective masses for H scattering are 75 and 150. Each aggregate has a set of vibrational modes with energies distributed in the range 0 < E ≤ 0.125 eV, and each H2O molecule exhibits the internal modes with characteristic energies of 0.2, 0.45, and 0.46 eV. The amplitudes of the low-energy vibrations are selected so the calculated scattering agrees with the Materials Testing Reactor data. Total cross sections calculated on the new model and the Nelkin model agree quite well with the data. The new model gives values of the average cosine of the scattering angle that are closer to the data than those calculated by the Nelkin model, but the calculated results are always higher than the data. At very low neutron energies, the present Nelkin model calculations give total cross sections that are lower than those reported by Koppel and Young using essentially the same model. The reason for this is not known.