ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IEA report: Challenges need to be resolved to support global nuclear energy growth
The International Energy Agency published a new report this month outlining how continued innovation, government support, and new business models can unleash nuclear power expansion worldwide.
The Path to a New Era for Nuclear Energy report “reviews the status of nuclear energy around the world and explores risks related to policies, construction, and financing.”
Find the full report at IEA.org.
Frederick G. Hammitt, M. John Robinson, and J. F. Lafferty
Nuclear Science and Engineering | Volume 29 | Number 1 | July 1967 | Pages 131-142
Technical Paper | doi.org/10.13182/NSE67-A17815
Articles are hosted by Taylor and Francis Online.
Two theoretical models to predict axial pressure distribution, void fraction, and velocity in a cavitating venturi are applied. The theoretical predictions are compared with experimental data from cold-water and mercury tests, and good agreement for the pressure profiles is found. The predicted void fractions are found to be too high, probably because the models assume zero slip or negative slip between the vapor and liquid phases. The analogy between the cavitating venturi and other choked-flow regimes is explored. One of the theoretical models used is based on the assumption that the cavitating venturi is essentially entirely analogous to a deLaval nozzle operating in a choked-flow regime with a compressible gas. The cavitating venturi is an example of an extremely low quality two-phase choked flow device. The present study is thus somewhat applicable to the study of liquid-cooled nuclear reactor pressure vessel or piping ruptures, which have received considerable attention in recent years. However, the qualities encountered in the present cavitation case are an order of magnitude lower than those usually considered for the reactor safety analyses, so that the present study is a limiting case for these.