ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
E.J. McGrath and Robert W. Albrecht
Nuclear Science and Engineering | Volume 29 | Number 1 | July 1967 | Pages 67-86
Technical Paper | doi.org/10.13182/NSE67-A17811
Articles are hosted by Taylor and Francis Online.
Formal development of the theory for harmonic analysis of neutron multiplying systems is carried out completely in the frequency domain. From basic probability theory, and an assumed reactor model, the problem is expressed as the Fokker-Planck equation in terms of the characteristic function, thus enabling the moments required for a statistical analysis to be obtained. Second-moment calculations include investigation into the bias in estimates of the power spectral density arising from the existence of finite record lengths. It is seen that for even very long records large biases can result, particularly at the lower frequencies. Variance analysis for estimates of the power spectral density investigates all moments up to and including the fourth for neutrons, delayed neutron precursors, and Fourier coefficients. The results show that for the most part, the variances can be described by a single parameter in which the extraneous neutron source plays a particularly important role. For reactors with large sources, the Fourier coefficients are shown to be Gaussian. For systems with small sources, variance in estimates of the power spectral density can become very large, and even the classical smoothed estimate is not consistent.