ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
E.J. McGrath and Robert W. Albrecht
Nuclear Science and Engineering | Volume 29 | Number 1 | July 1967 | Pages 67-86
Technical Paper | doi.org/10.13182/NSE67-A17811
Articles are hosted by Taylor and Francis Online.
Formal development of the theory for harmonic analysis of neutron multiplying systems is carried out completely in the frequency domain. From basic probability theory, and an assumed reactor model, the problem is expressed as the Fokker-Planck equation in terms of the characteristic function, thus enabling the moments required for a statistical analysis to be obtained. Second-moment calculations include investigation into the bias in estimates of the power spectral density arising from the existence of finite record lengths. It is seen that for even very long records large biases can result, particularly at the lower frequencies. Variance analysis for estimates of the power spectral density investigates all moments up to and including the fourth for neutrons, delayed neutron precursors, and Fourier coefficients. The results show that for the most part, the variances can be described by a single parameter in which the extraneous neutron source plays a particularly important role. For reactors with large sources, the Fourier coefficients are shown to be Gaussian. For systems with small sources, variance in estimates of the power spectral density can become very large, and even the classical smoothed estimate is not consistent.