ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IEA report: Challenges need to be resolved to support global nuclear energy growth
The International Energy Agency published a new report this month outlining how continued innovation, government support, and new business models can unleash nuclear power expansion worldwide.
The Path to a New Era for Nuclear Energy report “reviews the status of nuclear energy around the world and explores risks related to policies, construction, and financing.”
Find the full report at IEA.org.
S. Pearlstein and E. V. Weinstock
Nuclear Science and Engineering | Volume 29 | Number 1 | July 1967 | Pages 28-42
Technical Paper | doi.org/10.13182/NSE67-A17807
Articles are hosted by Taylor and Francis Online.
Calculations have been performed of scattering and absorption self-shielding effects in the activation of bare and cadmium-covered Au, In, and 1/υ detectors in infinite slab geometry in both monodirectional (beam) and isotropic flux, for a range of detector thicknesses. Energy loss on scattering is included. It is found that the calculated activation rates agree well with published data on detector activity vs cadmium thickness and with measurements of the sandwich type. The effect of scattering is to increase the activity of the detectors over what would be observed in the absence of scattering, in a beam flux, and to decrease it in an isotropic flux. These effects are due almost entirely to scattering from the cadmium covers rather than from the detector. The contribution to the activation from neutrons scattered once in the cover is found to decrease markedly with detector thickness for the resonance detectors, and to remain more or less constant for 1/υ detectors, over a range of practical thicknesses. Effective cadmium cutoff energies have also been computed for the zero-thickness detectors and are in agreement with previously published tabulations. Tables of correction factors for scattering and for absorption self-shielding are presented.