ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
S. Pearlstein and E. V. Weinstock
Nuclear Science and Engineering | Volume 29 | Number 1 | July 1967 | Pages 28-42
Technical Paper | doi.org/10.13182/NSE67-A17807
Articles are hosted by Taylor and Francis Online.
Calculations have been performed of scattering and absorption self-shielding effects in the activation of bare and cadmium-covered Au, In, and 1/υ detectors in infinite slab geometry in both monodirectional (beam) and isotropic flux, for a range of detector thicknesses. Energy loss on scattering is included. It is found that the calculated activation rates agree well with published data on detector activity vs cadmium thickness and with measurements of the sandwich type. The effect of scattering is to increase the activity of the detectors over what would be observed in the absence of scattering, in a beam flux, and to decrease it in an isotropic flux. These effects are due almost entirely to scattering from the cadmium covers rather than from the detector. The contribution to the activation from neutrons scattered once in the cover is found to decrease markedly with detector thickness for the resonance detectors, and to remain more or less constant for 1/υ detectors, over a range of practical thicknesses. Effective cadmium cutoff energies have also been computed for the zero-thickness detectors and are in agreement with previously published tabulations. Tables of correction factors for scattering and for absorption self-shielding are presented.