ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
A. Tsechanski, M. Segev, G. Shani
Nuclear Science and Engineering | Volume 84 | Number 3 | July 1983 | Pages 226-233
Technical Paper | doi.org/10.13182/NSE83-A17791
Articles are hosted by Taylor and Francis Online.
Integral experiments with a large graphite stack and fast neutron spectra calculations are described. A well-collimated beam of (14.75 ± 0.05) MeV (D,T) neutrons from a generator incident on the graphite resulted in a neutron spectrum that strongly correlated with the fine structure of the carbon nuclei, including anisotropy of elastic and inelastic scattering to first levels. This experimental approach is easier and more straightforward from the calculational point of view than one with a neutron source inside of a stack. The neutron spectrum measurement was performed by an NE-213 liquid scintillator using a pulse-shape discrimination technique to reject gamma-ray counts. The unfolding of the proton recoil spectrum was done by the FORIST code. The calculations were performed using the DOT 3.5 two-dimensional discrete ordinates neutron transport code incorporating the ENDF/B-IV cross-section library with the ETOG III group cross-section generating code. Comparison between measured and calculated spectra showed a reasonable agreement in the 1- to 8-MeV energy range. On the other hand, great discrepancies (up to an order of magnitude) are revealed in the range from 8 to 10.5 MeV. It was found that these discrepancies are due to the fact that the ETOG III program does not take into consideration the angle/energy correlation in inelastic scattering. Including the angle/energy correlation in inelastic scattering drastically improved the agreement between measurements and calculations in the inelastic scattering range to the first level of the carbon. The calculated spectrum in the 7- to 10.5-MeV range, i.e., in the inelastic scattering range, was found to be very sensitive to the anisotropy distribution of inelastic scattering to the first level. Therefore, these kinds of integral experiments (with a monoenergetic collimated neutron beam introduced from outside) supply direct data on the anisotropy of both inelastic and elastic scattering.