ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
When your test capsule is the test: ORNL’s 3D-printed rabbit
Oak Ridge National Laboratory has, for the first time, designed, printed, and irradiated a specimen capsule—or rabbit capsule—for use in its High Flux Isotope Reactor (HFIR), the Department of Energy announced on January 15.
L. A. Belblidia, J. M. Kallfelz, D. G. Cacuci
Nuclear Science and Engineering | Volume 84 | Number 3 | July 1983 | Pages 206-225
Technical Paper | doi.org/10.13182/NSE83-A17790
Articles are hosted by Taylor and Francis Online.
This paper presents an efficient method to analyze variations that nuclear data perturbations induce in one-dimensional power-density distributions. This method is called the Taylor-generalized perturbation theory (Taylor-GPT) method since it is based on (a) use of a Taylor series expansion of the response variation, and (b) use of generalized perturbation theory (GPT) to evaluate the derivative operators that appear as coefficients in this Taylor series. Equations satisfied by the importance functions for the derivatives of the response variations are derived and solved with existing GPT codes. The characteristics of these functions are highlighted analytically. Particular attention is focused on the numerical value and location of the maximum power density. This is because perturbations in system parameters affect not only the value at the maximum, but also the location of this maximum. The Taylor-GPT method can efficiently assess such effects. The practical usefulness of the Taylor-GPT method is illustrated by considering test cases involving a simplified heterogeneous liquid-metal fast breeder reactor model. The results indicate that this method is as accurate as the GPT method, yet requires fewer calculations when investigating space-dependent power density variations.