ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Dimitri Gidaspow, Firooz Rasouli, Yong W. Shin
Nuclear Science and Engineering | Volume 84 | Number 3 | July 1983 | Pages 179-195
Technical Paper | doi.org/10.13182/NSE83-A17788
Articles are hosted by Taylor and Francis Online.
A six-equation model for a one-dimensional, transient, two-phase flow is briefly discussed, and the characteristic and compatibility equations are obtained by the method of characteristics. The equations consist of five conservation equations and a constitutive relative-velocity equation. The model equations constitute a well-posed initial value problem and have real characteristics in all flow regimes. The ordinary differential equations obtained are suitable for numerical applications, such as for blowdown analyses. The special case of an isothermal unequal velocity model is applied to the case of inflow of a liquid sodium-argon mixture into a horizontal pipe and to the case of pressure pulse propagation rate in an air-water system. The expected S-shaped curves are obtained for the volume fraction of liquid sodium. The numerical results for the pressure pulse propagation agree with experimental data at low-volume fractions.