ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
F. Helm, G. Henneges, W. Maschek
Nuclear Science and Engineering | Volume 87 | Number 3 | July 1984 | Pages 295-313
Technical Paper | doi.org/10.13182/NSE84-A17784
Articles are hosted by Taylor and Francis Online.
The reactivity effects of material rearrangements, simulating conditions in a postulated liquid-metal fast breeder reactor accident, were measured in SNEAK-12A, a single-zone uranium-fueled critical assembly, and calculated using current Kernforschungszentrum Karlsruhe methods and data and, in part, also using the corresponding modules of the SIMMER-II accident analysis system. For all cases investigated, satisfactory agreement between theory and experiment was reached when two-dimensional transport eigenvalue calculations were used. The application of first-order perturbation theory or diffusion theory in a number of cases led to larger discrepancies, particularly when the experiments involved fuel compaction.