ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
When your test capsule is the test: ORNL’s 3D-printed rabbit
Oak Ridge National Laboratory has, for the first time, designed, printed, and irradiated a specimen capsule—or rabbit capsule—for use in its High Flux Isotope Reactor (HFIR), the Department of Energy announced on January 15.
H. Giese, S. Pilate, J. M. Stevenson
Nuclear Science and Engineering | Volume 87 | Number 3 | July 1984 | Pages 262-282
Technical Paper | doi.org/10.13182/NSE84-A17782
Articles are hosted by Taylor and Francis Online.
Measurements of the worths of simulated control rods for fast power reactors have been made in the ZEBRA and SNEAK critical assemblies by the modified source multiplication method (MSMM). The assemblies used were the conventional and unconventional core arrangements from the BIZET program and a compacted version of a conventional core. The control rods were mainly natural B4C, with some study of 40% 10B-enriched B4C and of Eu2O3. Correction factors for the MSMM were obtained from eigenvalue and source-mode diffusion theory calculations in XY geometry. The measured rod worths and interactions are compared with calculated values from methods and data similar to those used by the different participants in the BIZET program to predict the corresponding parameters in fast power reactors. In general, acceptable agreement is found.