ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
A. Goldfeld, A. Tsechanski, and G. Shani
Nuclear Science and Engineering | Volume 90 | Number 3 | July 1985 | Pages 330-340
Technical Note | doi.org/10.13182/NSE85-A17774
Articles are hosted by Taylor and Francis Online.
Different concepts of integral experiments for fusion blanket neutronics are investigated. The first is with the neutron source (tritium target of a neutron generator) located inside of or in immediate proximity to the stack of blanket materials under consideration. The second is based on irradiation of the stack by means of a collimated and, therefore, monoenergetic T(d, n)4He neutron beam with a tritium target placed outside the stack. The comparison between the different concepts is carried out by means of the Monte Carlo transport code MCNP with continuous energy treatment. The comparison between the two approaches reveals that the integral experiments with a collimated monoenergetic T(d,n)4He neutron beam result in a neutron spectrum that is better correlated with the details of elastic and inelastic scattering to the first level of the material's nuclei than the one with a neutron source inside a stack. In the case of a collimated neutron beam, there is a clearer separation between energy regions of different neutron interactions and, therefore, the source of discrepancies between measurement and calculation can be identified more easily and corrected by a proper treatment of the cross sections of the specified nuclear reactions.