ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
Hussein Khalil
Nuclear Science and Engineering | Volume 90 | Number 3 | July 1985 | Pages 263-280
Technical Paper | doi.org/10.13182/NSE85-A17768
Articles are hosted by Taylor and Francis Online.
A diffusion theory method is developed for synthetic acceleration of nodal Sn calculations in multidimensional Cartesian geometries. The diffusion model is derived from the spatially continuous diffusion equation by applying spatial approximations that are P1 expansions of the corresponding approximations made in solving the transport equation. The equations of the diffusion model are formulated in a way that permits application of existing and highly efficient nodal diffusion theory techniques to their numerical solution. Test calculations for several benchmark problems in X-Y geometry are presented to illustrate the efficiency and stability of the acceleration method when applied to a “constant-linear” nodal transport approximation. The method is shown to yield point-wise flux convergence of 10-4 in fewer than ten synthetic iterations for all problems considered and to require substantially less computational effort than unaccelerated solutions.