ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Hussein Khalil
Nuclear Science and Engineering | Volume 90 | Number 3 | July 1985 | Pages 263-280
Technical Paper | doi.org/10.13182/NSE85-A17768
Articles are hosted by Taylor and Francis Online.
A diffusion theory method is developed for synthetic acceleration of nodal Sn calculations in multidimensional Cartesian geometries. The diffusion model is derived from the spatially continuous diffusion equation by applying spatial approximations that are P1 expansions of the corresponding approximations made in solving the transport equation. The equations of the diffusion model are formulated in a way that permits application of existing and highly efficient nodal diffusion theory techniques to their numerical solution. Test calculations for several benchmark problems in X-Y geometry are presented to illustrate the efficiency and stability of the acceleration method when applied to a “constant-linear” nodal transport approximation. The method is shown to yield point-wise flux convergence of 10-4 in fewer than ten synthetic iterations for all problems considered and to require substantially less computational effort than unaccelerated solutions.