ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
Gyoo Won Suh and Hee Cheon No
Nuclear Science and Engineering | Volume 90 | Number 3 | July 1985 | Pages 236-247
Technical Paper | doi.org/10.13182/NSE85-A17765
Articles are hosted by Taylor and Francis Online.
The USODA (U-tube Steam Generator Controller Design Analysis) code was developed to simulate the transient behavior of a vertical natural circulation U-tube steam generator in pressurized water reactors and to design the optimal level controller. The steam generator was represented by sixth order linear differential equations through matrix reduction. The momentum equation for the recirculation flow models the effects of the separators, U-bend regions, and spatial acceleration. To assure stability, the Lyapunov theorem was adopted. The optimal gains were obtained by minimizing the quadratic performance index and by using both Newton-Raphson and successive overrelaxation methods, which guarantee fast convergence. Sample calculations for Korea Nuclear Unit 2 showed that a control system consisting of standard proportional integral differential controls can be successfully employed for the control of water level. The optimization procedure led to a stable system with good controlled response.