ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
U.K., Japan to extend decommissioning partnership
The U.K.’s Sellafield Ltd. and Japan’s Tokyo Electric Power Company have pledge to continue to work together for up to an additional 10 years, extending a cooperative agreement begun in 2014 following the 2011 tsunami that resulted in the irreparable damage of TEPCO’s Fukushima Daiichi plant.
Eze Wills, Norman Roderick, Patrick McDaniel
Nuclear Science and Engineering | Volume 93 | Number 3 | July 1986 | Pages 291-307
Technical Paper | doi.org/10.13182/NSE86-A17758
Articles are hosted by Taylor and Francis Online.
A method for solving particle transport problems has been developed. In this method the particle flux is expressed as a linear and separable sum of odd and even components in the direction variables. Then a Bubnov-Galerkin projection technique and an equivalent variational Raleigh-Ritz solution are applied to the second-order transport equation. A dual finite element basis of polynomial splines in space and spherical harmonics in angle is used. The general theoretical and numerical problem formalism is carried out for a seven-dimensional problem with anisotropic scattering, time dependence, three spatial and two angular variables, and with a multigroup treatment of the energy dependence. The boundary conditions for most physical problems of interest are dealt with explicitly and rigorously by a classical minimization (variational) principle. Finally, the computational validation of the method is obtained by a computer solution to the monoenergetic steady-state air-over-ground problem in a cylindrical (r, z) geometry and with an exponentially varying atmosphere.