ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
Tien-Ko Wang, F. M. Clikeman, K. O. Ott
Nuclear Science and Engineering | Volume 93 | Number 3 | July 1986 | Pages 262-272
Technical Paper | doi.org/10.13182/NSE86-A17755
Articles are hosted by Taylor and Francis Online.
Experimental and computational studies of the gamma-ray energy deposition rate in the Fast Breeder Blanket Facility (FBBF) were performed with thermoluminescent dosimeters (TLDs). Various corrections including the TLD neutron sensitivities and the f factors (general cavity-ionization theory) were applied to the TLD measurements. Comparisons were made with results of three computer codes — 1DX, 2DB, and ANISN — and two nuclear libraries — LIB-IV and EPR. Both neutron and gamma-ray calculations were performed. The previously reported deviations between the gamma-ray energy deposition calculated-toexperiment (C/E) ratios for lead and for stainless steel were resolved. It is believed that the remaining C/E discrepancy comes primarily from the inaccuracies in the neutronics part of the calculations, because similar dropoffs are also reported in the FBBF reaction rate C/E comparisons. Detailed analysis of the deviation between transport (Sn) and diffusion calculations in the FBBF were performed. It was found that the deviation is built up in the blanket region and is largely independent of the curvature of the “independent” source region. Comparisons between Sn and diffusion calculations (on a one-dimensional basis) for neutron fluxes and reaction rates indicated that the use of transport calculations should reduce the discrepancies of C/E comparisons.