ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
When your test capsule is the test: ORNL’s 3D-printed rabbit
Oak Ridge National Laboratory has, for the first time, designed, printed, and irradiated a specimen capsule—or rabbit capsule—for use in its High Flux Isotope Reactor (HFIR), the Department of Energy announced on January 15.
Anil Kumar, M. Srinivasan, K. Subba Rao
Nuclear Science and Engineering | Volume 84 | Number 2 | June 1983 | Pages 155-164
Technical Note | doi.org/10.13182/NSE83-A17722
Articles are hosted by Taylor and Francis Online.
The Trombay criticality formula (TCF) has been derived by incorporating a number of well-known concepts of criticality physics to enable prediction of changes in critical size or keff following alterations in geometrical and physical parameters of uniformly reflected small reactor assemblies characterized by large neutron leakage from the core. The variant parameters considered are size, shape, density and diluent concentration of the core, and density and thickness of the reflector. The mass-to-surface-area ratio of the core, is essentially a measure of the product ρr extended to nonspherical systems and plays a dominant role in the TCF. The functional dependence of keff on σ/σc, the system size relative to critical, is expressed in the TCF through two alternative representations, namely the modified Wigner rational form and the exponential form as follows: where is the k∞ of the critical system. The quantity in the square brackets is close to unity and Z is a parameter weakly dependent on both the physical and geometrical properties of the core, where θ = ln[/( - 1)] and ε is a parameter introduced to account for the steep rise in the net leakage probability for highly subcritical cores. The applications of the TCF range from the quick computation of the keff of a lump of fissile fuel having arbitrary shape and density through the study of keff of highly enriched fissile materials during transportation accidents to an estimation of the void and fuel expansion coeffficients of reactivity in high leakage systems.