ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
M. Ishii, H. K. Fauske
Nuclear Science and Engineering | Volume 84 | Number 2 | June 1983 | Pages 131-146
Technical Paper | doi.org/10.13182/NSE83-A17719
Articles are hosted by Taylor and Francis Online.
For certain postulated severe accident conditions such as a loss of piping integrity and a loss of heat sink in connection with liquid-metal fast breeder reactor safety analysis, the process of decay heat removal can lead to coolant boiling. For such low-heat-flux/low-flow conditions, a dryout or critical heat flux criterion is required in order to assess the potential for fuel pin failure and melting. Computer codes and full-scale experimental data are not available to completely address this problem at this time. Based on the interpretation of available experimental data and new analyses, it is concluded that a typical subassembly can be safely cooled (avoid dryout) under natural convection conditions for heat fluxes below ∼8 to 10% of the average nominal power; i.e., decay heat power levels can be safely accommodated in the natural convective regime. Furthermore, since this coolability limit is predicted to be rather insensitive to the subcooling value, it follows that the safety case relative to decay heat removal for an intact core geometry also becomes essentially independent of detailed accident conditions such as the potential for temporary stagnated flow or inlet flow reversal conditions.