ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
M. Ishii, H. K. Fauske
Nuclear Science and Engineering | Volume 84 | Number 2 | June 1983 | Pages 131-146
Technical Paper | doi.org/10.13182/NSE83-A17719
Articles are hosted by Taylor and Francis Online.
For certain postulated severe accident conditions such as a loss of piping integrity and a loss of heat sink in connection with liquid-metal fast breeder reactor safety analysis, the process of decay heat removal can lead to coolant boiling. For such low-heat-flux/low-flow conditions, a dryout or critical heat flux criterion is required in order to assess the potential for fuel pin failure and melting. Computer codes and full-scale experimental data are not available to completely address this problem at this time. Based on the interpretation of available experimental data and new analyses, it is concluded that a typical subassembly can be safely cooled (avoid dryout) under natural convection conditions for heat fluxes below ∼8 to 10% of the average nominal power; i.e., decay heat power levels can be safely accommodated in the natural convective regime. Furthermore, since this coolability limit is predicted to be rather insensitive to the subcooling value, it follows that the safety case relative to decay heat removal for an intact core geometry also becomes essentially independent of detailed accident conditions such as the potential for temporary stagnated flow or inlet flow reversal conditions.