ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
Hisao Yamakoshi
Nuclear Science and Engineering | Volume 87 | Number 2 | June 1984 | Pages 152-180
Technical Paper | doi.org/10.13182/NSE84-A17709
Articles are hosted by Taylor and Francis Online.
By introducing a concept of shielding characteristics, a new method is proposed for shielding calculations of spent fuel shipping casks. The method separates ordinary shielding calculation into two steps, one calculates the radiation current leaking from the unshielded cavity region. The other method synthesizes the radiation dose rate outside the cask arising from the leaked current, the response functions for the radiation dose rate at the outer cask surface, and the functions for the radiation current reflected from the inner surface of the cask wall. In the synthesis, the effect of the coupling of the currents reflected between the cask wall and the cavity region is taken into account. The validity of the proposed method is confirmed by applying the method to an analysis of the measured data obtained for a CRIEPI cask. Response functions, the established characteristic functions for radiation shielding capabilities, are calculated for several typical actual casks. Calculated results are summarized for the convenience of applying the proposed method to actual cases. The merits of the present study are (a) the calculational code of the proposed method deals with only matrix calculations in short-step programming and is suitable for a microcomputer for which input data of characteristic functions are supplied from floppy disks, (b) with large and high-speed computers, one can evaluate radiation dose rates on the outer surface of a given cask in very short machine time and with good accuracy, (c) by application of the characteristic functions, one can extract information that will improve the design of the cask walls to provide more effective shielding by intercomparison of characteristic functions for several types of casks, and (d) one can foresee the influence of changes in the energy spectrum of source radiations on the neutron and the gamma-ray dose rates at the outer cask surface by the rule-of-thumb of superimposing the characteristic functions of the dose rate because they are functions of the incident energies.