ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
A. Pavlik, G. Winkler, M. Uhl, A. Paulsen, H. Liskien
Nuclear Science and Engineering | Volume 90 | Number 2 | June 1985 | Pages 186-202
Technical Note | doi.org/10.13182/NSE85-A17676
Articles are hosted by Taylor and Francis Online.
Using activation techniques, the excitation functions for the 58Ni(n,2n)57Ni and 58Ni(n,np + pn + d)57Co reactions were measured in the neutron energy range from 12.7 MeV, close to the (n,2n) threshold, to 19.6 MeV with an accuracy of typically ∼4.5 and ∼6%, respectively. In the 13.4- to 14.8-MeV energy range, the accuracy achieved for the cross sections of the above reactions was typically 2 and 3%, respectively. In addition, cross sections were measured for the 58Ni(n,p)58Co reaction in the 14-MeV region with an accuracy of typically ∼2%. The experimental results were compared with calculations based on the optical model, the compound nucleus model, and the exciton model of nuclear reactions. A quite satisfactory simultaneous reproduction of all experimental data, including the proton- and alpha-production spectrum, was achieved employing a unique set of model parameters. Moreover, the new (n,2n) cross sections provide an improved data base for reactor dosimetry and spectrum unfolding applications.