ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
G. Traxler, A. Chalupka, R. Fischer, B. Strohmaier, M. Uhl, H. Vonach
Nuclear Science and Engineering | Volume 90 | Number 2 | June 1985 | Pages 174-185
Technical Paper | doi.org/10.13182/NSE85-A17675
Articles are hosted by Taylor and Francis Online.
The energy and angular distributions of the protons from the 93Nb(n, xp) reactions were investigated by means of the Vienna multitelescope system. Whereas total hydrogen production cross sections are in fair agreement with previous results, considerable deviations from a previous measurement of the shape of the angle-integrated proton spectrum have been found. No other detailed measurements of the angular distributions have as yet been reported. The angle-integrated results are compared with calculations based on the statistical model of nuclear reactions, including precompound processes. It is shown that the proton emission spectrum can be described within this model if the usual pairing correction is also used for the exciton state densities within precompound calculations and otherwise a set of parameters which gives an adequate description of all other neutron-induced reactions of 93Nb. The angular distributions, which show a strongly energy-dependent forward-backward asymmetry, are compared to the results of a phenomenological model and to those of direct reaction theory for continuum cross sections.