ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
When your test capsule is the test: ORNL’s 3D-printed rabbit
Oak Ridge National Laboratory has, for the first time, designed, printed, and irradiated a specimen capsule—or rabbit capsule—for use in its High Flux Isotope Reactor (HFIR), the Department of Energy announced on January 15.
G. Traxler, A. Chalupka, R. Fischer, B. Strohmaier, M. Uhl, H. Vonach
Nuclear Science and Engineering | Volume 90 | Number 2 | June 1985 | Pages 174-185
Technical Paper | doi.org/10.13182/NSE85-A17675
Articles are hosted by Taylor and Francis Online.
The energy and angular distributions of the protons from the 93Nb(n, xp) reactions were investigated by means of the Vienna multitelescope system. Whereas total hydrogen production cross sections are in fair agreement with previous results, considerable deviations from a previous measurement of the shape of the angle-integrated proton spectrum have been found. No other detailed measurements of the angular distributions have as yet been reported. The angle-integrated results are compared with calculations based on the statistical model of nuclear reactions, including precompound processes. It is shown that the proton emission spectrum can be described within this model if the usual pairing correction is also used for the exciton state densities within precompound calculations and otherwise a set of parameters which gives an adequate description of all other neutron-induced reactions of 93Nb. The angular distributions, which show a strongly energy-dependent forward-backward asymmetry, are compared to the results of a phenomenological model and to those of direct reaction theory for continuum cross sections.