ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
Jose March-Leuba, Dan G. Cacuci, Rafael B. Perez
Nuclear Science and Engineering | Volume 93 | Number 2 | June 1986 | Pages 124-136
Technical Paper | doi.org/10.13182/NSE86-A17664
Articles are hosted by Taylor and Francis Online.
A physical model of nonlinear boiling water reactor (BWR) dynamics has been developed and employed to calculate the amplitude of limit cycle oscillations and their effects on fuel integrity over a wide range of operating conditions in the Vermont Yankee reactor. These calculations have confirmed that, beyond the threshold for linear stability, the reactor's state variables undergo limit cycle oscillations. This work shows that the amplitudes of these oscillations are very sensitive to changes in operating conditions and are not restricted to small magnitudes as observed in previous stability tests. Consequently, large-amplitude limit cycle oscillations become a possible scenario for BWR operation at low-flow conditions. The effects on fuel integrity of such large-amplitude oscillations have been studied in detail. In particular, it has been shown that limit cycles that oscillate with frequencies higher than 0.25 Hz and that reach the high-power safety scram level of 120% are not likely to compromise fuel integrity.