ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leak-tightness test on deck for SRS mega unit
The Savannah River Site in South Carolina will begin a leak-tightness test to qualify the megavolume Saltstone Disposal Unit (SDU) 10 to store up to 33 million gallons of solidified, decontaminated salt solution produced at the site.
Jose March-Leuba, Dan G. Cacuci, Rafael B. Perez
Nuclear Science and Engineering | Volume 93 | Number 2 | June 1986 | Pages 111-123
Technical Paper | doi.org/10.13182/NSE86-A17663
Articles are hosted by Taylor and Francis Online.
A phenomenological model has been developed to simulate the qualitative behavior of boiling water reactors (BWRs) in the nonlinear regime under deterministic and stochastic excitations. After the linear stability threshold is crossed, limit cycle oscillations appear due to interactions between two unstable equilibrium points and the phase-space trajectories. This limit cycle becomes unstable when the feedback gain exceeds a certain critical value. Subsequent limit cycle instabilities produce a cascade of period-doubling bifurcations that lead to aperiodic pulsed behavior. Under stochastic excitations, BWRs exhibit a single characteristic resonance, at ∼0.5 Hz, in the linear regime. By contrast, this work shows that harmonics of this characteristic frequency appear in the nonlinear regime. Furthermore, this work also demonstrates that amplitudes of the limit cycle oscillations do not depend on the variance of the stochastic excitation and remain bounded at all times.