ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A series of firsts delivers new Plant Vogtle units
Southern Nuclear was first when no one wanted to be.
The nuclear subsidiary of the century-old utility Southern Company, based in Atlanta, Ga., joined a pack of nuclear companies in the early 2000s—during what was then dubbed a “nuclear renaissance”—bullish on plans for new large nuclear facilities and adding thousands of new carbon-free megawatts to the grid.
In 2008, Southern Nuclear applied for a combined construction and operating license (COL), positioning the company to receive the first such license from the U.S. Nuclear Regulatory Commission in 2012. Also in 2008, Southern became the first U.S. company to sign an engineering, procurement, and construction contract for a Generation III+ reactor. Southern chose Westinghouse’s AP1000 pressurized water reactor, which was certified by the NRC in December 2011.
Fast forward a dozen years—which saw dozens of setbacks and hundreds of successes—and Southern Nuclear and its stakeholders celebrated the completion of Vogtle Units 3 and 4: the first new commercial nuclear power construction project completed in the U.S. in more than 30 years.
H. Feshbach, G. Goertzel, H. Yamauchi
Nuclear Science and Engineering | Volume 1 | Number 1 | March 1956 | Pages 4-19
Technical Paper | doi.org/10.13182/NSE56-A17654
Articles are hosted by Taylor and Francis Online.
The detailed variation with energy of that part of the neutron cross section of an element which shows resonance behavior is temperature dependent. This dependence, the Doppler effect, arises from the temperature variation of neutron-nuclear relative velocity distribution. An effective cross section (dependent on reactor composition) useful in reactor calculations in place of the rapidly fluctuating actual cross section is defined. Knowledge of the variation of this effective cross section with material temperature is needed for calculation of the temperature coefficient of reactivity. Unfortunately, resolution of present measuring equipment does not permit sufficiently accurate measurement of cross sections in the energy range of interest in fast reactors (100 kev to several Mev), for Doppler effect calculation nor are direct measurements in this energy range available at present. To estimate Doppler effect, it has been assumed that in any energy range containing many resonances the actual cross section is equivalent, as far as reactor behavior is concerned, to a cross section constructed by selecting spacings between neighboring resonances and other resonance parameters independently from probability distributions of these parameters. In this manner, temperature coefficients may be calculated in terms of measured cross sections and various statistical parameters of the probability distributions, the parameters being estimated from low-energy data on actual resonances. In applying the low-energy data to the energy ranges of interest, the predictions of the statistical model of the nucleus, as developed by Weisskopf and others, are employed.