ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
G. C. Pomraning
Nuclear Science and Engineering | Volume 24 | Number 3 | March 1966 | Pages 291-301
Technical Paper | doi.org/10.13182/NSE66-A17641
Articles are hosted by Taylor and Francis Online.
The variational method and region-balance method, both special cases of the more general method of weighted residuals, are each used as the formalism to develop a spatial expansion of the diffusion equation for two problems. These are 1)a spatially dependent spectrum problem for the purpose of computing the self-shielding in the 240Pu resonance and 2) a simple one-dimensional eigenvalue problem. In both instances numerical results indicate that the variational method is more accurate than the region-balance method. Of particular interest is the variational spatial-expansion approach to the eigenvalue problem. This may be a useful method for deriving a set of difference equations for the multigroup diffusion equation in that it should lead to an accurate representation of the flux with a relatively small number of mesh points.