ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
James R. Sheff, Robert W. Albrecht
Nuclear Science and Engineering | Volume 24 | Number 3 | March 1966 | Pages 246-259
Technical Paper | doi.org/10.13182/NSE66-A17638
Articles are hosted by Taylor and Francis Online.
The theory of space-dependent stochastic fluctuations is developed in sufficient generality that any specialization can be made to a particular reactor model by finding the appropriate Green's function for the mean-neutron-density equation of the system in question. The approach used is the Langevin technique which, as developed here, yields the cross-correlation function as a double convolution over two Green's functions and the correlation function of equivalent “noise sources” present within the system. The character of these noise sources is examined in considerable detail to gain the basic physical understanding necessary to arrive at a calculational procedure and specific formulae. It is shown that when delayed-neutron effects are included, the input noise sources are not white. That is, their spectral-density functions are not constant. A clear distinction is made between fluctuations in the neutron density and the fluctuations observed with a detector. The density fluctuations include contributions from a neutron correlated with itself and direct progeny, whereas the mechanism of detection (invariably removing a neutron) eliminates this correlation.