ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
G. Lansing Blackshaw, Raymond L. Murray
Nuclear Science and Engineering | Volume 27 | Number 3 | March 1967 | Pages 520-532
Technical Paper | doi.org/10.13182/NSE86-A17617
Articles are hosted by Taylor and Francis Online.
The elastic scattering of low-energy neutrons by the nuclei of a monatomic gas, which have an isotropic Maxwellian velocity distribution, is examined in detail within the framework of classical physics. A unified mathematical treatment, which fully preserves the three-dimensional aspects of the scattering process, is employed to study the dynamics of the neutron-nuclear elastic collision. A new form of the scattering probability function in velocity space is derived under the assumption of isotropic scattering in the center-of-mass system. Unique single-integral expressions, which are valid for any analytical or numerical representations of σs(υr) and σa(υr), the microscopic scattering and absorption cross section as functions of the relative neutron-nuclear speed, are developed for the velocity scattering kernel, its spherical-harmonics weighted moments, and the total scattering and absorption probabilities. These formulations are tested by explicitly evaluating them in closed form for certain analytical cross-section representations and comparing these solutions with known results. The utility of the collision kernels for new solutions of the transport equation under conditions of variable scattering cross section is discussed.