ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IEA report: Challenges need to be resolved to support global nuclear energy growth
The International Energy Agency published a new report this month outlining how continued innovation, government support, and new business models can unleash nuclear power expansion worldwide.
The Path to a New Era for Nuclear Energy report “reviews the status of nuclear energy around the world and explores risks related to policies, construction, and financing.”
Find the full report at IEA.org.
G. Lansing Blackshaw, Raymond L. Murray
Nuclear Science and Engineering | Volume 27 | Number 3 | March 1967 | Pages 520-532
Technical Paper | doi.org/10.13182/NSE86-A17617
Articles are hosted by Taylor and Francis Online.
The elastic scattering of low-energy neutrons by the nuclei of a monatomic gas, which have an isotropic Maxwellian velocity distribution, is examined in detail within the framework of classical physics. A unified mathematical treatment, which fully preserves the three-dimensional aspects of the scattering process, is employed to study the dynamics of the neutron-nuclear elastic collision. A new form of the scattering probability function in velocity space is derived under the assumption of isotropic scattering in the center-of-mass system. Unique single-integral expressions, which are valid for any analytical or numerical representations of σs(υr) and σa(υr), the microscopic scattering and absorption cross section as functions of the relative neutron-nuclear speed, are developed for the velocity scattering kernel, its spherical-harmonics weighted moments, and the total scattering and absorption probabilities. These formulations are tested by explicitly evaluating them in closed form for certain analytical cross-section representations and comparing these solutions with known results. The utility of the collision kernels for new solutions of the transport equation under conditions of variable scattering cross section is discussed.