ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IEA report: Challenges need to be resolved to support global nuclear energy growth
The International Energy Agency published a new report this month outlining how continued innovation, government support, and new business models can unleash nuclear power expansion worldwide.
The Path to a New Era for Nuclear Energy report “reviews the status of nuclear energy around the world and explores risks related to policies, construction, and financing.”
Find the full report at IEA.org.
A. F. Henry
Nuclear Science and Engineering | Volume 27 | Number 3 | March 1967 | Pages 493-510
Technical Paper | doi.org/10.13182/NSE86-A17615
Articles are hosted by Taylor and Francis Online.
The equations and boundary conditions that constitute the P1 approximation to the space-time-energy transport equation and its adjoint can be obtained from a variational expression that admits trial functions discontinuous in space and energy. This expression can then be used to derive all the standard forms of the few-group diffusion equations—equations using flux averaged constants, over-lapping group equations, parallel group equations—as well as many more hitherto unexamined. Such a procedure is carried out in the present paper. All the standard few-group results, as well as formally exact few-group equations and multigroup equations, are shown to be special cases of a single general form derived from the variational expression. Internal boundary conditions are obtained automatically, and it is shown that in some cases discontinuities in fluxes and currents ought to be imposed across internal boundaries.