ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IEA report: Challenges need to be resolved to support global nuclear energy growth
The International Energy Agency published a new report this month outlining how continued innovation, government support, and new business models can unleash nuclear power expansion worldwide.
The Path to a New Era for Nuclear Energy report “reviews the status of nuclear energy around the world and explores risks related to policies, construction, and financing.”
Find the full report at IEA.org.
Henri Fenech and Henri M. Guéron
Nuclear Science and Engineering | Volume 31 | Number 3 | March 1968 | Pages 505-512
Technical Paper | doi.org/10.13182/NSE68-A17594
Articles are hosted by Taylor and Francis Online.
The principal methods of core design uncertainly analysis are critically reviewed. The overconservatism of the Deterministic Method, which aims at ensuring that the design limits cannot be exceeded in the most loaded channel (or at the most loaded spot), leads to a probabilistic approach (the Statistical Method) in which the probability of such an event is evaluated. Recent work in this direction is discussed. It is emphasized, however, that a probabilistic reliability evaluation must cover the whole core, and not only its most heavily loaded element. The Synthesis Method presented here fulfills this requirement without demanding the use of computers. The Synthesis Method also allows the use of a realistic space-dependent reliability criterion. The various methods under review are compared in their application to a fast gas-cooled reactor core. The power levels corresponding to a given reliability are calculated and the Synthesis Method is seen to be more conservative than the classical Statistical Method and less conservative than the Deterministic Method.