ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
Henri Fenech and Henri M. Guéron
Nuclear Science and Engineering | Volume 31 | Number 3 | March 1968 | Pages 505-512
Technical Paper | doi.org/10.13182/NSE68-A17594
Articles are hosted by Taylor and Francis Online.
The principal methods of core design uncertainly analysis are critically reviewed. The overconservatism of the Deterministic Method, which aims at ensuring that the design limits cannot be exceeded in the most loaded channel (or at the most loaded spot), leads to a probabilistic approach (the Statistical Method) in which the probability of such an event is evaluated. Recent work in this direction is discussed. It is emphasized, however, that a probabilistic reliability evaluation must cover the whole core, and not only its most heavily loaded element. The Synthesis Method presented here fulfills this requirement without demanding the use of computers. The Synthesis Method also allows the use of a realistic space-dependent reliability criterion. The various methods under review are compared in their application to a fast gas-cooled reactor core. The power levels corresponding to a given reliability are calculated and the Synthesis Method is seen to be more conservative than the classical Statistical Method and less conservative than the Deterministic Method.