ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE awards $2.7B for HALEU and LEU enrichment
Yesterday, the Department of Energy announced that three enrichment services companies have been awarded task orders worth $900 million each. Those task orders were given to American Centrifuge Operating (a Centrus Energy subsidiary) and General Matter, both of which will develop domestic HALEU enrichment capacity, along with Orano Federal Services, which will build domestic LEU enrichment capacity.
The DOE also announced that it has awarded Global Laser Enrichment an additional $28 million to continue advancing next generation enrichment technology.
Donald S. Rampolla
Nuclear Science and Engineering | Volume 31 | Number 3 | March 1968 | Pages 396-414
Technical Paper | doi.org/10.13182/NSE68-A17584
Articles are hosted by Taylor and Francis Online.
In the design of nuclear reactors it is frequently necessary to adjust the parameters appearing in the equations describing neutron transport, e.g., the macroscopic absorption cross section in the diffusion equation, in order to force region reaction rates to agree with results of more exact calculations or experiment. Given a multiregion cell problem with a specified absorption rate in each region it is proved that there exists, for any neutron transport equation that has a solution that is everywhere positive, a non-unique set of region absorption cross sections which yield the specified absorption rates; however, if the cross section is fixed in one region, the set is, in a specially defined sense, unique. Two systematic iterative methods for obtaining such sets of region cross sections are presented; one of these methods has been incorporated into a computer program.