ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
G. Reffo, F. Fabbri, K. Wisshak, F. Käppeler
Nuclear Science and Engineering | Volume 83 | Number 3 | March 1983 | Pages 401-407
Technical Note | doi.org/10.13182/NSE83-A17576
Articles are hosted by Taylor and Francis Online.
Capture gamma-ray spectra of 240Pu, 242Pu, and 238U were calculated in the framework of the spherical optical model and the statistical model. A consistent set of input parameters was determined from available experimental information or from model-guided systematics. The complete gamma-ray cascades were calculated considering all possible transitions up to multiplicity seven. All experimental information on level schemes and gamma-ray transition probabilities of the compound nuclei was explicitly included as input. The capture gamm-ray spectra were used to correct experimental data for the capture cross sections of 240Pu and 242Pu from a relative measurement using a Moxon-Rae detector with a graphite converter and with 197Au and 238U as standards. This correction is required to take into account that the detector efficiency is not exactly proportional to the gamma-ray energy. The resulting correction factors proved to be negligible for measurements relative to 238U; whereas, they are ∼3% if gold is used as a standard.