ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Emerson Paul Chivington, William E. Kastenberg
Nuclear Science and Engineering | Volume 83 | Number 3 | March 1983 | Pages 350-365
Technical Paper | doi.org/10.13182/NSE83-A17568
Articles are hosted by Taylor and Francis Online.
A technique is developed for the treatment of space-time neutron kinetics, which can include the effects of material motion. The new method is applied to sample problems where azimuthal fuel motion is postulated to occur. The technique developed employs the finite element method, Gear's variable predictor corrector scheme, and a Lagrangian mesh that moves with the reactor materials. We treat a cylindrical reactor in (r,θ) geometry. Because finite elements are used to describe both the fluxes and the boundaries of the mesh elements, the resulting deformed elements could be arbitrarily shaped. Second-order polynomials (elements) were found to be better than linear polynomials in treating the geometry because of the curved boundaries used in the problem. Azimuthal motion was found to increase reactivity, and large motion resulted in large increases in reactor power for the cases studied. However, the cases studied showed that azimuthal motion was less important than both inward and outward radial motion. Point kinetics (based on first-order perturbation theory) did not accurately predict the power excursion in cases where substantial azimuthal displacement occurred.