ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
Emerson Paul Chivington, William E. Kastenberg
Nuclear Science and Engineering | Volume 83 | Number 3 | March 1983 | Pages 350-365
Technical Paper | doi.org/10.13182/NSE83-A17568
Articles are hosted by Taylor and Francis Online.
A technique is developed for the treatment of space-time neutron kinetics, which can include the effects of material motion. The new method is applied to sample problems where azimuthal fuel motion is postulated to occur. The technique developed employs the finite element method, Gear's variable predictor corrector scheme, and a Lagrangian mesh that moves with the reactor materials. We treat a cylindrical reactor in (r,θ) geometry. Because finite elements are used to describe both the fluxes and the boundaries of the mesh elements, the resulting deformed elements could be arbitrarily shaped. Second-order polynomials (elements) were found to be better than linear polynomials in treating the geometry because of the curved boundaries used in the problem. Azimuthal motion was found to increase reactivity, and large motion resulted in large increases in reactor power for the cases studied. However, the cases studied showed that azimuthal motion was less important than both inward and outward radial motion. Point kinetics (based on first-order perturbation theory) did not accurately predict the power excursion in cases where substantial azimuthal displacement occurred.