ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
Zhang Huanqiao, Liu Zuhua, Ding Shengyue, and Liu Shaoming
Nuclear Science and Engineering | Volume 86 | Number 3 | March 1984 | Pages 315-319
Technical Note | doi.org/10.13182/NSE84-A17560
Articles are hosted by Taylor and Francis Online.
This research was published (in Chinese) in Chin. J. Nucl. Phys., 3, 2, 149 (1981). The average number of prompt neutron and the distributions of prompt neutron number probability P(ν) for spontaneous fission of 240Pu, 242Cm, and 244Cm relative to (252Cf) have been measured using a large gadolinium-loaded liquid scintillation counter with a co-incidence method. The results were (240Pu) = 2.141 ± 0.016, (242Cm) = 2.562 ± 0.020, and (244Cm) = 2.721 ±0.021. The measured distributions of prompt neutron number were fitted with Gaussian curves by a weighted least-squares method. The widths of Gaussian distribution are 1.149 ± 0.047, 1.159 ± 0.074, and 1.175 ± 0.098 for 240Pu, 242Cm, and 244Cm, respectively. These results as well as a previous measurement of spontaneous fission of 252Cf show the linear variation of σ with at the first order of approximation. The data were fitted by a least-squares method, and the result is given by σ = 0.980 + 0.076. This fact demonstrates the trend that the width of the excitation energy distribution of fission fragments increases with the average excitation energy of the fission fragments in the range of nuclides mentioned above.