ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
When your test capsule is the test: ORNL’s 3D-printed rabbit
Oak Ridge National Laboratory has, for the first time, designed, printed, and irradiated a specimen capsule—or rabbit capsule—for use in its High Flux Isotope Reactor (HFIR), the Department of Energy announced on January 15.
Zhang Huanqiao, Liu Zuhua, Ding Shengyue, and Liu Shaoming
Nuclear Science and Engineering | Volume 86 | Number 3 | March 1984 | Pages 315-319
Technical Note | doi.org/10.13182/NSE84-A17560
Articles are hosted by Taylor and Francis Online.
This research was published (in Chinese) in Chin. J. Nucl. Phys., 3, 2, 149 (1981). The average number of prompt neutron and the distributions of prompt neutron number probability P(ν) for spontaneous fission of 240Pu, 242Cm, and 244Cm relative to (252Cf) have been measured using a large gadolinium-loaded liquid scintillation counter with a co-incidence method. The results were (240Pu) = 2.141 ± 0.016, (242Cm) = 2.562 ± 0.020, and (244Cm) = 2.721 ±0.021. The measured distributions of prompt neutron number were fitted with Gaussian curves by a weighted least-squares method. The widths of Gaussian distribution are 1.149 ± 0.047, 1.159 ± 0.074, and 1.175 ± 0.098 for 240Pu, 242Cm, and 244Cm, respectively. These results as well as a previous measurement of spontaneous fission of 252Cf show the linear variation of σ with at the first order of approximation. The data were fitted by a least-squares method, and the result is given by σ = 0.980 + 0.076. This fact demonstrates the trend that the width of the excitation energy distribution of fission fragments increases with the average excitation energy of the fission fragments in the range of nuclides mentioned above.