ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
When your test capsule is the test: ORNL’s 3D-printed rabbit
Oak Ridge National Laboratory has, for the first time, designed, printed, and irradiated a specimen capsule—or rabbit capsule—for use in its High Flux Isotope Reactor (HFIR), the Department of Energy announced on January 15.
A. M. Gadalla, N. A. L. Mansour
Nuclear Science and Engineering | Volume 86 | Number 3 | March 1984 | Pages 247-252
Technical Paper | doi.org/10.13182/NSE84-A17553
Articles are hosted by Taylor and Francis Online.
Equilibrium relationships in the uranium-manganese-oxygen system in air have been investigated as a function of temperature. Various mixtures of U3O8 and MnO2 were heated and from the compositions reached at various temperatures, a ternary isobaric diagram was constructed showing the composition and phase changes occurring in air. Three ternary nonstoichiometric phases were found to exist over wide composition ranges with the nominal compositions MnU2O7, MnUO4, and MnU2O6. The MnU2O7 dissociated at 1040°C to MnUO4 and U3O8; MnUO4 was found to be stable only between 930 and 1175°C, while MnU2O6 exists above 1130°C.