ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
A.M. Street, P.E. Hodgson
Nuclear Science and Engineering | Volume 92 | Number 3 | March 1986 | Pages 459-464
Technical Note | doi.org/10.13182/NSE86-A17533
Articles are hosted by Taylor and Francis Online.
The method previously used to analyze the inelastic scattering of neutrons by 238U by separating the cross sections into compound nucleus and direct interactions is applied to the corresponding data for 232Th. The fission and capture channels are now included explicitly, resulting in a 5% increase in the compound nucleus contribution. Other data and theoretical techniques are discussed briefly. The excitation functions for 24 states up to 2.5 MeV are analyzed, together with two angular distributions at 2.5 MeV.