ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
Keisuke Kobayashi and Tsuyoshi Misawa
Nuclear Science and Engineering | Volume 92 | Number 3 | March 1986 | Pages 407-420
Technical Paper | doi.org/10.13182/NSE86-A17529
Articles are hosted by Taylor and Francis Online.
It is shown that the semi-discrete ordinates equation can be used to create a computer program for a general order of PL approximations for solving the multigroup neutron transport equation in two-dimensional x-y geometry. Sample calculations for problems using up to a P7 approximation and up to four energy groups are given, and the results are compared with corresponding ones obtained by the discrete ordinates method. As the order of approximations increases, both results show good agreement, when the influence of the ray effect is not appreciable. The advantage of the present method is that the ray effect does not occur, which is the problem in the discrete ordinates method.