ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A series of firsts delivers new Plant Vogtle units
Southern Nuclear was first when no one wanted to be.
The nuclear subsidiary of the century-old utility Southern Company, based in Atlanta, Ga., joined a pack of nuclear companies in the early 2000s—during what was then dubbed a “nuclear renaissance”—bullish on plans for new large nuclear facilities and adding thousands of new carbon-free megawatts to the grid.
In 2008, Southern Nuclear applied for a combined construction and operating license (COL), positioning the company to receive the first such license from the U.S. Nuclear Regulatory Commission in 2012. Also in 2008, Southern became the first U.S. company to sign an engineering, procurement, and construction contract for a Generation III+ reactor. Southern chose Westinghouse’s AP1000 pressurized water reactor, which was certified by the NRC in December 2011.
Fast forward a dozen years—which saw dozens of setbacks and hundreds of successes—and Southern Nuclear and its stakeholders celebrated the completion of Vogtle Units 3 and 4: the first new commercial nuclear power construction project completed in the U.S. in more than 30 years.
G. S. Brunson, E. N. Pettitt, and R. D. McCurdy
Nuclear Science and Engineering | Volume 1 | Number 2 | May 1956 | Pages 174-184
Technical Paper | doi.org/10.13182/NSE56-A17521
Articles are hosted by Taylor and Francis Online.
Delayed neutron studies have been made in the Experimental Breeder Reactor (EBR), using a conventional sample transfer system and a neutron counter comprised of BF3 tubes in a graphite geometry. Samples of Th, U233, U235, U238, and Pu were irradiated in a fast flux; samples of U233, U235, and Pu in a thermal flux. The ratio of the delayed neutron yield per fission (based on the longest four periods) to the delayed neutron yield per fast fission of U235 was determined as: for fast fission of U233, 0.414 ± 7.5%; for fast fission of Pu, 0.405± 7.5%; for fast fission of Th, 3.09 ± 17%; for fast fission of U238, 2.23 ± 7.5%. The ratio of fast fission to thermal fission delayed neutron yields was not significantly different from unity for all samples except Pu, where the ratio of thermal to fast fission yields was 0.888 ± 6%. This latter is believed to be primarily attributable to the 5% fraction of Pu240 in the sample.