ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
J. M. Chapman, C. M. Huddleston
Nuclear Science and Engineering | Volume 25 | Number 1 | May 1966 | Pages 66-74
Technical Paper | doi.org/10.13182/NSE66-A17502
Articles are hosted by Taylor and Francis Online.
Methods are outlined for computer calculation of first- and second-order contributions to gamma-ray dose rates in two-legged rectangular concrete ducts of personnel shelters. Four computer programs, based on values of differential dose albedo derived from Monte Carlo calculations, are used to calculate corner-lip inscattering, backscattering from surfaces visible to both source and detector, and combinations of these two scattering events. The first program computes the dose contribution from corner-lip inscatter and from combinations of corner-lip penetration and wall backscatter. The second calculates first-order backscatter from the basic scattering areas in the corner of the duct. The third computes the second-order backscatter contribution from two successive backscatters from the duct walls. The final program calculates the contribution due to combinations of one wall backscatter and one corner-lip inscatter. The results of the calculations are compared with experimental results obtained by several investigators. The experimental studies used 11 × 11-in., 3 × 3-ft, and 6 × 6-ft ducts; the gamma-ray sources were, variously, 198Au, 137Cs, 60Co, and 24Na. Since the difference between calculated and measured values of gamma-ray dose in the second leg is generally less than 30%, results obtained by calculation can be used to predict the attenuation factors of two-legged concrete ducts and entranceways leading into personnel shelters with an expected error of less than 30%.