ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IEA report: Challenges need to be resolved to support global nuclear energy growth
The International Energy Agency published a new report this month outlining how continued innovation, government support, and new business models can unleash nuclear power expansion worldwide.
The Path to a New Era for Nuclear Energy report “reviews the status of nuclear energy around the world and explores risks related to policies, construction, and financing.”
Find the full report at IEA.org.
J. M. Chapman, C. M. Huddleston
Nuclear Science and Engineering | Volume 25 | Number 1 | May 1966 | Pages 66-74
Technical Paper | doi.org/10.13182/NSE66-A17502
Articles are hosted by Taylor and Francis Online.
Methods are outlined for computer calculation of first- and second-order contributions to gamma-ray dose rates in two-legged rectangular concrete ducts of personnel shelters. Four computer programs, based on values of differential dose albedo derived from Monte Carlo calculations, are used to calculate corner-lip inscattering, backscattering from surfaces visible to both source and detector, and combinations of these two scattering events. The first program computes the dose contribution from corner-lip inscatter and from combinations of corner-lip penetration and wall backscatter. The second calculates first-order backscatter from the basic scattering areas in the corner of the duct. The third computes the second-order backscatter contribution from two successive backscatters from the duct walls. The final program calculates the contribution due to combinations of one wall backscatter and one corner-lip inscatter. The results of the calculations are compared with experimental results obtained by several investigators. The experimental studies used 11 × 11-in., 3 × 3-ft, and 6 × 6-ft ducts; the gamma-ray sources were, variously, 198Au, 137Cs, 60Co, and 24Na. Since the difference between calculated and measured values of gamma-ray dose in the second leg is generally less than 30%, results obtained by calculation can be used to predict the attenuation factors of two-legged concrete ducts and entranceways leading into personnel shelters with an expected error of less than 30%.