ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IEA report: Challenges need to be resolved to support global nuclear energy growth
The International Energy Agency published a new report this month outlining how continued innovation, government support, and new business models can unleash nuclear power expansion worldwide.
The Path to a New Era for Nuclear Energy report “reviews the status of nuclear energy around the world and explores risks related to policies, construction, and financing.”
Find the full report at IEA.org.
G. Bitelli, R. Martinelli, F. V. Orestano, E. Santandrea
Nuclear Science and Engineering | Volume 28 | Number 2 | May 1967 | Pages 270-276
Technical Paper | doi.org/10.13182/NSE67-A17477
Articles are hosted by Taylor and Francis Online.
The results of critical experiments, performed with organic-moderated platetype assemblies containing uranium enriched to 90% in 235U, in the zero-power reactor ROSPO, are reported. Several cores, differing in critical radius (19.5 to 47.5 cm) and in the ratio of uranium-to-stainless-steel plate number, have been investigated. The comparison with the reactivities calculated by a standard two-group calculation procedure shows an overestimate of the eff's (up to 1.95% for the smallest critical core) with a systematic dependence on the core radius. A satisfactory agreement is found for large-size cores (R ≥ 40 cm). It is shown that simple calculational improvements, such as a four-group evaluation of the nuclear constants, and a more detailed treatment of core-radial reflector interface zone, lead to a homogeneously good agreement (within 0.25% ) over the whole range of core dimensions.