ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
R. C. Erdmann, H. Lurie
Nuclear Science and Engineering | Volume 28 | Number 2 | May 1967 | Pages 198-202
Technical Paper | doi.org/10.13182/NSE67-A17469
Articles are hosted by Taylor and Francis Online.
Using an exact transport solution, numerical calculations of interface flux and current are made for a plane burst of neutrons introduced at the boundary separating two semi-infinite media. Asymptotic flux expressions for large time at the interface are also presented, and these have the exponential dependence given by diffusion theory. Following the neutron burst, the interface current is found to change directions once, at most. The magnitude of the interface current is shown to depend initially on the difference in scattering cross sections of the half-spaces and asymptotically on the difference in absorption cross sections. In the special case of identical half-spaces, diffusion theory yields a more accurate representation of the flux than does P1 theory, although for long times both approximate solutions rapidly approach the exact result.