ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
R. C. Erdmann, H. Lurie
Nuclear Science and Engineering | Volume 28 | Number 2 | May 1967 | Pages 198-202
Technical Paper | doi.org/10.13182/NSE67-A17469
Articles are hosted by Taylor and Francis Online.
Using an exact transport solution, numerical calculations of interface flux and current are made for a plane burst of neutrons introduced at the boundary separating two semi-infinite media. Asymptotic flux expressions for large time at the interface are also presented, and these have the exponential dependence given by diffusion theory. Following the neutron burst, the interface current is found to change directions once, at most. The magnitude of the interface current is shown to depend initially on the difference in scattering cross sections of the half-spaces and asymptotically on the difference in absorption cross sections. In the special case of identical half-spaces, diffusion theory yields a more accurate representation of the flux than does P1 theory, although for long times both approximate solutions rapidly approach the exact result.