ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
R. C. Erdmann, H. Lurie
Nuclear Science and Engineering | Volume 28 | Number 2 | May 1967 | Pages 198-202
Technical Paper | doi.org/10.13182/NSE67-A17469
Articles are hosted by Taylor and Francis Online.
Using an exact transport solution, numerical calculations of interface flux and current are made for a plane burst of neutrons introduced at the boundary separating two semi-infinite media. Asymptotic flux expressions for large time at the interface are also presented, and these have the exponential dependence given by diffusion theory. Following the neutron burst, the interface current is found to change directions once, at most. The magnitude of the interface current is shown to depend initially on the difference in scattering cross sections of the half-spaces and asymptotically on the difference in absorption cross sections. In the special case of identical half-spaces, diffusion theory yields a more accurate representation of the flux than does P1 theory, although for long times both approximate solutions rapidly approach the exact result.