ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Wm. A. Thomas, E. E. Lewis
Nuclear Science and Engineering | Volume 84 | Number 1 | May 1983 | Pages 67-71
Technical Note | doi.org/10.13182/NSE83-A17459
Articles are hosted by Taylor and Francis Online.
Two iterative algorithms are formulated for the solution of the within-group neutron diffusion equation in three dimensions. The algorithms are highly vectorizable, operating, respectively, on vectors with lengths of order N3/2 and of N2/2, where N is the number of mesh points in each of the three directions. The methods are well suited for present day pipeline computers. On a Cyber-205, they yield floating point operation rates that are higher by a factor of 20 to 30 than those achieved with scalar operations of the same algorithms. Convergence rates, as well as acceleration by two-cyclic overrelaxation, are investigated. For fixed source test problems with 30 X 30 X 30 grids, solutions are obtained in ∼1 s.