ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
M. J. Ades, K. L. Peddicord, S. D. Montgomery
Nuclear Science and Engineering | Volume 84 | Number 1 | May 1983 | Pages 47-58
Technical Note | doi.org/10.13182/NSE83-A17456
Articles are hosted by Taylor and Francis Online.
A promising fuel concept for fast breeder reactor applications is sphere-pac mixed carbide fuel. To support this development, it is necessary to devise analytical methods to assess and predict the behavior of fuel pins under irradiation conditions. This Note describes the modeling of the thermal aspect of this behavior. As a first step in treating a sphere-pac mixed carbide fuel pin, models for various physical phenomena have been developed and integrated to give the overall fuel pin response. Included are descriptions for the thermal conductivity of the packed particle bed in its initial configuration and during restructuring, the sintering of fuel spheres leading to the restructuring within the pin, the temperature distribution, grain growth and porosity redistribution, gas release and free swelling, and the effect of the gas in the free volume of the pin. The models describing the various thermal components were incorporated into the computer program SPECKLE-I. In the absence of a detailed mechanism analysis, restrictive assumptions were made. While the code is a limited first step in the analysis, results from SPECKLE-I were compared with several pin irradiations. Calculations of gas pressure and composition, fractional gas release, and the extent of initial-stage restructuring within the pin were compared to measurements. Initial results generally agree to within 20% or better for the parameters investigated.