ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
When your test capsule is the test: ORNL’s 3D-printed rabbit
Oak Ridge National Laboratory has, for the first time, designed, printed, and irradiated a specimen capsule—or rabbit capsule—for use in its High Flux Isotope Reactor (HFIR), the Department of Energy announced on January 15.
Z. W. Bell, J. K. Dickens, D. C. Larson, J. H. Todd
Nuclear Science and Engineering | Volume 84 | Number 1 | May 1983 | Pages 12-32
Technical Paper | doi.org/10.13182/NSE83-A17454
Articles are hosted by Taylor and Francis Online.
Interactions of neutrons with the iron isotope 57Fe have been studied by measuring gamma-ray production cross sections for incident neutron energies between 0.16 and 21 MeV. Neutrons produced by the Oak Ridge Electron Linear Accelerator impinged on a metallic iron sample enriched to 93% in the isotope 57Fe. The resulting gamma radiation was detected using a 100-cm3 Ge(Li) detector placed at 125 deg with respect to the neutron beam line. A complete description of the experiment is given. Absolute gamma-ray production cross sections were measured for gamma rays corresponding to the 57Fe(n,n′ γ)57Fe, 57Fe(n,γ)58Fe, 57Fe(n,α)54Cr, 57Fe(n,2n)56Fe, and 57Fe(n,p)57Mn reactions. The cross section for the 57Fe(n,2n)56Fe reaction exceeds 1 b for En ∼ 15 MeV, and the cross section for the 57Fe(n,p)57Mn reaction exceeds 0.2 b for En ∼ 9 MeV. A new excited state is postulated for 57Mn to account for observed data. Several new transitions are reported for decay of levels in 57Fe. Measured cross sections are compared with data obtained from the current ENDF/B evaluation.