ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
Tomasz Błeński
Nuclear Science and Engineering | Volume 87 | Number 1 | May 1984 | Pages 84-96
Technical Note | doi.org/10.13182/NSE84-A17449
Articles are hosted by Taylor and Francis Online.
The extrapolation distance in the cylindrical Milne problem (“black” cylinder immersed in a homogeneous, infinite, isotropically scattering and absorbing medium) is calculated in one- and two-group approximations. The method used consists of asymptotic expansions in 1/R and R (R being the radius of the cylinder) for large and small R, respectively, and of a variational method for R = O(1), R measured in mean-free-paths. The numerical results are given for two cases in the one-group (c = 0.90 and c = 0.95) and for two cases in the two-group approximation (both for κ = 1). The results show convergence of the methods and sufficient accuracy of the applied numerical procedures. This conclusion is confirmed by the comparison of the values of the extrapolation distance calculated by variational and asymptotic expansion formulas in regions of R, where both can be applied.