The results of an experiment on adiabatic annular air-water flow are described and analyzed to predict the gas/liquid film interaction and the dispersed mass flow rate of liquid. The experiment was conducted in a 1.262-cm-i.d. vertical tube, 426.72 cm long with upward flow. Several tests were conducted within a range of air mass flow rates of 23 to 144 kg/h, water mass flow rates of 46 to 237 kg/h, and inlet pressure of 276 to 620 kPa at 2°C. The pressure drop and the dispersed and film water mass fractions along the tube were measured. To obtain the wave velocity distribution, the wave disturbance length, and wave frequency, 3000 frame/s films were analyzed. The mass fraction of dispersed liquid transported by the gas is correlated as a function of static pressure drop, total mass flow rates of air and water, and distance from the water injection location. The analysis and correlation of the experimental results indicate that to a good approximation, the net rate of water mass transport from the film is proportional to the rate of shear energy transferred from the dispersed phase to the disturbance area of the waves. The rate of liquid droplet redeposition on the liquid film was assumed to produce an equal mass rate of liquid dispersion by “splashing.” The correlation fits the present experimental data with a ±30% band.