ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
B. R. Wienke, R. E. Hiromoto
Nuclear Science and Engineering | Volume 90 | Number 1 | May 1985 | Pages 116-123
Technical Note | doi.org/10.13182/NSE85-1
Articles are hosted by Taylor and Francis Online.
The iterative, multigroup, discrete ordinates Sn representation for the linear transport equation enjoys widespread computational use and popularity. Serial iteration schemes and numerical algorithms developed over the years provide a timely framework for parallel extension. On the Denelcor heterogeneous element processor, three parallel iteration schemes (two chaotic, one ordered) are investigated for solving the one-dimensional Sn transport equation. Concurrent inner sweeps, coupled acceleration techniques, synchronized inner-outer loops, and chaotic iteration are described and results of computations are contrasted. The multigroup representation and serial iteration methods are also reviewed. The basic iterative Sn approach lends itself to parallel tasking, portably affording an effective medium for performing transport calculations on future architectures. This analysis represents a first attempt to extend serial Sn algorithms to parallel environments and provides good baseline estimates on ease of parallel implementation, relative algorithm efficiency, comparative speedup, and some future directions. An ordered and chaotic strategy is examined, with and without concurrent rebalance and diffusion acceleration, which efficiently support high degrees of parallelization and appear to be robust and viable parallel iteration techniques. The standard inner-outer technique, presently employed in a majority of production Sn codes, is a weaker parallel iteration strategy. Modifications, extensions, and recoding effort to parallelize existing serial algorithms are also simple. Chaotic iteration, heretofore difficult to simulate on serial machines, holds promise and appears to converge faster than ordered schemes. Actual parallel speedup and efficiency are high and payoff appears substantial.