ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Joseph M. Doster, Matt B. Richards
Nuclear Science and Engineering | Volume 93 | Number 1 | May 1986 | Pages 69-77
Technical Paper | doi.org/10.13182/NSE83-A17418
Articles are hosted by Taylor and Francis Online.
Numerical solutions involving finite difference representations of the equations governing fluid flow, heat conduction, and diffusion processes (including neutron diffusion) usually consist of solving large sparse matrix equations. These matrix equations can be recast into M smaller coupled matrix equations amenable to solution by using M multiple computer processors operating in parallel. A special form of the fluids equations commonly used in nuclear reactor thermal-hydraulic analysis, i.e., one-dimensional flow in closed loop geometry is emphasized. Parallel algorithms for solving these equations are developed and evaluated in terms of computational speed against conventional solutions on a serial machine. Timing studies are performed to assess the efficiency of these methods and to determine the optimum number of parallel processors for these applications.