ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
Y. T. Chan, S. Banerjee
Nuclear Science and Engineering | Volume 93 | Number 1 | May 1986 | Pages 62-68
Technical Paper | doi.org/10.13182/NSE83-A17417
Articles are hosted by Taylor and Francis Online.
Numerical methods for the solution of free interface problems are reviewed. For two-dimensional problems, an application of the random vortex method is proposed in which the rotational and irrotational flows are first calculated and then reconstituted into the time-dependent velocity field through the use of Hodge's decomposition theorem. The irrotational part is calculated by conformally mapping the flow, bounded on one side by the interface, into a strip at every time step, followed by use of the Gram-Schmidt orthonormalization process to solve Laplace's equation for the velocity potential. An alternative for the irrotational flow calculation, in which the free interface is represented by a vortex sheet and the boundary integral method is applied, is also discussed. The rotational field is calculated by generating vortex sheets to satisfy the no-slip boundary conditions, and by following the convective and diffusive motion of the sheets and vortex blobs. The technique is shown to yield accurate results for damping of solitary waves on shallow liquids.