ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
W. K. Foell, T. J. Connolly
Nuclear Science and Engineering | Volume 26 | Number 3 | November 1966 | Pages 399-417
Technical Paper | doi.org/10.13182/NSE66-A17363
Articles are hosted by Taylor and Francis Online.
Measurements of resonance absorption of neutrons were performed on single-absorber systems containing 238U and 232Th individually, and in binary systems containing mixtures of these two absorbers. The single-absorber measurements were made over a wide range of absorber concentrations and served as a check on the adequacy of resonance absorber calculations and/or resonance parameter data. The binary systems provided a situation in which the spacing of resonances is closer than in a single absorber, thus making questionable the usual assumption of separability of resonances. The measurements were performed by means of static reactivity techniques in the Advanced Reactivity Measurement Facility (ARMF-II) at the National Reactor Testing Station in Idaho. The calculated and measured values for the uranium dioxide systems are in good agreement over the wide range of absorber concentrations. The experimental results for the thorium dioxide samples are consistent with work by other experimenters but are in quantitative disagreement with resonance integrals calculated from a recent compilation of resonance parameters. The measured resonance integrals of the binary mixtures were smaller than the values predicted from the measurements on the single-absorber systems, indicating an interference effect of approximately 3% in the samples of highest absorber concentration. Calculations performed with a multiresonance version of Nordheim's ZUT code underestimated this interference effect between absorbers.