ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
W. K. Foell, T. J. Connolly
Nuclear Science and Engineering | Volume 26 | Number 3 | November 1966 | Pages 399-417
Technical Paper | doi.org/10.13182/NSE66-A17363
Articles are hosted by Taylor and Francis Online.
Measurements of resonance absorption of neutrons were performed on single-absorber systems containing 238U and 232Th individually, and in binary systems containing mixtures of these two absorbers. The single-absorber measurements were made over a wide range of absorber concentrations and served as a check on the adequacy of resonance absorber calculations and/or resonance parameter data. The binary systems provided a situation in which the spacing of resonances is closer than in a single absorber, thus making questionable the usual assumption of separability of resonances. The measurements were performed by means of static reactivity techniques in the Advanced Reactivity Measurement Facility (ARMF-II) at the National Reactor Testing Station in Idaho. The calculated and measured values for the uranium dioxide systems are in good agreement over the wide range of absorber concentrations. The experimental results for the thorium dioxide samples are consistent with work by other experimenters but are in quantitative disagreement with resonance integrals calculated from a recent compilation of resonance parameters. The measured resonance integrals of the binary mixtures were smaller than the values predicted from the measurements on the single-absorber systems, indicating an interference effect of approximately 3% in the samples of highest absorber concentration. Calculations performed with a multiresonance version of Nordheim's ZUT code underestimated this interference effect between absorbers.